Redirecting gene-modified T cells toward various cancer types using tagged antibodies.
نویسندگان
چکیده
PURPOSE To develop an adaptable gene-based vector that will confer immune cell specificity to various cancer types. EXPERIMENTAL DESIGN Human and mouse T cells were genetically engineered to express a chimeric antigen receptor (CAR) that binds a fluorescein isothiocyanate (FITC) molecule, termed anti-FITC CAR T cells. Various antibodies (Ab) currently in clinical use including cetuximab (Ctx), trastuzumab (Her2), and rituximab (Rtx) were conjugated with FITC and tested for their ability to bind tumor cells, activate T cells, and induce antitumor effects in vitro and in vivo. RESULTS Anti-FITC CAR T cells recognize various cancer types when bound with FITC-labeled Abs resulting in efficient target lysis, T-cell proliferation, and cytokine/chemokine production. The treatment of immunocompromised mice with human anti-FITC CAR T cells plus FITC-labeled cetuximab (FITC-Ctx) delayed the growth of colon cancer but unexpectedly led to the outgrowth of EGF receptor (EGFR)-negative tumor cells. On the other hand, in a human pancreatic cancer cell line with uniform EGFR expression, anti-FITC CAR T cells plus FITC-Ctx eradicated preestablished late-stage tumors. In immunocompetent mice, anti-FITC CAR T cells exhibited potent antitumor activity against syngeneic mouse breast cancer expressing Her2 and B-cell lymphoma expressing CD20 by combining with FITC-Her2 and FITC-Rtx, respectively. In addition, the activity of anti-FITC CAR T cells could be attenuated by subsequent injections of nonspecific FITC-IgG. CONCLUSION These studies highlight an applicability of anti-tag CAR technology to treat patients with different types of cancers and a possibility to regulate CAR T-cell functions with competing FITC molecules.
منابع مشابه
Cancer Therapy: Preclinical Redirecting Gene-Modified T Cells toward Various Cancer Types Using Tagged Antibodies
Purpose: To develop an adaptable gene-based vector that will confer immune cell specificity to various
متن کاملN-myc downstream regulated gene 2 overexpression reduces matrix metalloproteinase-2 and -9 activities and cell invasion of A549 lung cancer cell line in vitro
Objective(s):N-myc downstream regulated gene 2 (NDRG2) is a candidate gene for tumor suppression. The expression of NDRG2 is down-regulated in several tumors including lung cancer. The aim of this study was to explore the effect of NDRG2 overexpression on invasion, migration, and enzymatic activity of matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9) in human lung adenocarcinoma A549 cells. Ma...
متن کاملHIV-Derived Lentiviral Vectors: Current Progress toward Gene Therapy and DNA Vaccination
Lentiviral vectors are promising gene delivery tools capable of transducing a variety of dividing and non-dividing cells, including pluripotent stem cells which are refractory for transduction by murine retroviruses. Although there is a growing debate on the safety of lentiviral vectors for gene transfer, in particular for those derived from human immunodeficiency viruses, type one (HIV-1) and ...
متن کاملp53 antibodies in patients with various types of cancer: assay, identification, and characterization.
Alteration of the p53 gene is the most frequent genetic alteration in human cancer and leads to the accumulation of mutant p53 in the nucleus of tumor cells. In addition, it has been shown that patients with various types of neoplasia have p53 antibodies in their sera which could be used as an indirect diagnostic procedure for p53 alteration. Using a new ELISA, we have analyzed the sera from mo...
متن کاملAdvancing Chimeric Antigen Receptor-Engineered T-Cell Immunotherapy Using Genome Editing Technologies: Challenges and Future Prospects
Chimeric antigen receptor engineered-T (CAR-T) cells also named as living drugs, have been recently known as a breakthrough technology and were applied as an adoptive immunotherapy against different types of cancer. They also attracted widespread interest because of the success of B-cell malignancy therapy achieved by anti-CD19 CAR-T cells. Current genetic toolbox enabled the synthesis of CARs ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 18 23 شماره
صفحات -
تاریخ انتشار 2012